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ABSTRACT:- In this paper, a modified explicit P-Stable technique for simulation of non-linear equations is 

presented. This technique is bit like Runge-Kutta method. Linear multistep methods examine only  at the points    

= a+mh, m = 0, 1, …, where as Runge-Kutta methods work  at  off-step points. The direct hybrid methods by Cash 

[1] and Chawla[2] combine these two features. Methods which are not P-stable can be unreliable for the 

simulation of fixed step oscillatory problems. A modified explicit P-Stable technique is often essential for the 

efficient simulation of such problems.  
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1. INTRODUCTION 

We are concerned with the solution of the system of 

differential equation which are of order two 

   

   
 = f(t, x), t   [a,b]  

depending on initial conditions  

x(a) =    , 
  

  
 =                                             (1) 

where    and    are given and x, f,   ,        . 

We have unique solution      of the initial value problem 

(1).  

The direct hybrid method has the form 
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2. DERIVATION OF PARAMETERS OF SIXTH 
ORDER DIRECT HYBRID METHOD 

Principal local truncation error is given by: 
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are coefficients of principal local truncation error. 

In order to derive parameters of sixth order direct hybrid 

method, we reduce the coefficients appearing  in the 

principal local truncation error. 

We have to Minimize F (  ,   , … ,   )  

subjects to  

                              ,   j = 1, 2, … , n.  

 Where,    and    are real and derivatives of F (X) are 

unavailable.  

We define the variables 
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Conditions are: 
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Coefficients   ,    and    defined in (5b) may be written as 
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We let objective function for the minimization 

  OBJ =   
  +   

  +   
  

we adopt the following procedure: 

I. FI

X:      ;       = 0.0, –0.1, 0.2, … , – 1.0, say, 

II. SE

T:       < –            ⁄⁄ , 

III. COMPUTE:   ,    and    to minimize   
  +   

  + 
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Table 1: minimization of OBJ 

                     OBJ 

0.000E + 00 –6.950E-03 4.167E-03 1.677E-02 1.171E-09 1.171E-09 2.783E-03 7.747E-06 

1.000E-01 –6.945E-03 3.994E-03 7.118E-02 –3.554E-09 3.554E-09 1.361E-02 4.693E-04 

2.000E-01 –2.778E-04 4.167E-03 1.677E-02 –3.562E-09 3.562E-09 2.944E-02 8.670E-04 

–3.000E-01 –4.445E-03 4.167E-03 1.677E-02 –9.072E-10 9.072E-10 5.028E-02 2.528E-03 

–4.000E-01 –1.362E-02 4.167E-03 1.677E-02 3.594E-09 –3.594E-09 7.611E-02 5.794E-03 

–5.000E-01 –2.778E-02 4.167E-03 1.677E-02 –3.606E-09 3.606E-09 1.069E-01 1.144E-02 

–6.000E-01 –4.694E-02 4.167E-03 1.677E-02 –3.656E-09 3.656E-09 1.428E-01 2.039E-02 

–7.000E-01 –7.111E-02 4.167E-03 1.677E-02 –3.676E-09 3.676E-09 1.8366E-01 3.371E-02 

–8.000E-01 –1.003E-01 4.167E-03 1.677E-02 –3.705E-09 3.705E-09 2.294E-01 5.264E-02 

–9.000E-01 –1.344E-01 4.167E-03 1.677E-02 –3.618E-09 3.618E-09 2.803E-01 7.856E-02 

From Table 1 we note that the objective function OBJ takes 

its smallest value when    = 0. 

Now we set,  

   = 0,     = 0,    = 0     (11) 

With this choice of coefficients we have, from (5b), the 

following set of parameters for the method: 
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3. NUMERICAL RESULTS 
We present some numerical results for the methods 

mentioned below. We compare our method (Method 3) with 

following methods:  

1) A P-stable, three-evaluation, fourth order method, with 

reduced truncation error,    = 0,    = 0 and   =  
 

 
 . 

2) A P-stable, three-evaluation, fourth order method, with 

reduced truncation error,    = 0,    = 0,   = 
 

 
 and     

=  
 

            
 . 

3) A  P-stable, three-evaluation, sixth order method. 

4) The three-evaluation, fourth order, P-stable method 

proposed by Cash [4]. 

5) The perfect square, P-stable, two-evaluation, fourth 

order method proposed by Thomas [3]. 

6) A P-stable, two-evaluation, fourth order method, with 

reduced truncation error. 

PROBLEM 

   (t) + z (t) = 0.001     , z (0)= 1 , z

 

  (0) = 0.9995  , 

z(t) ϵ                                                               

This linear problem has the analytical solution 

z (t) = u (t) +   v (t) ,    u (t) , v (t) ϵ R 

u (t) = cos (t) + 0.0005t sin (t) 

v (t) = sin (t)   0.0005t cos (t)  

We compare the performance of above mentioned methods 

with step sizes h =   ⁄ ,    ⁄    ⁄ ,     ⁄    ⁄ ,      ⁄     ⁄   

and    ⁄ . 

Table 2: Solutions of Method 1 

h Numerical 

value 

Error 

  ⁄  1.0039932 2.0211819E-03 

  ⁄  1.0028050 8.3298147E-04 

  ⁄  1.0023758 4.0380182E-04 

  ⁄  1.0021005 1.2855861E-04 

  ⁄  1.0020524 8.0403617E-05 

   ⁄  1.0019975 2.5518384E-05 

   ⁄  1.0019801 8.0884298E-06 

   ⁄  1.0019725 5.0639475E-07 

 

Table 3: Solutions of Method 2 

h Numerical value Error 

  ⁄  1.0039929 2.0209846E-03 

  ⁄  1.0028048 8.3287362E-04 

  ⁄  1.0023757 4.0375003E-04 

  ⁄  1.0021005 1.2854226E-04 

  ⁄  1.0020524 8.0393410E-05 

   ⁄  1.0019975 2.5515156E-05 

   ⁄  1.0019801 8.0874083E-06 

   ⁄  1.0019725 5.0633088E-07 

Table 4: Solutions of Method 3      

h 
Numerical 

value 
Error 

  ⁄  1.0039942 7.7816499E-05 

  ⁄  1.0019518 2.0224547E-05 

  ⁄  1.0019652 6,7423578E-06 

  ⁄  1.0019708 1.1947001E-06 

  ⁄  1.0019714 5.8861967E-07 

   ⁄  1.0019719 1.0456173E-07 

   ⁄  1.0019720 1.8589973E-08 

   ⁄  1.0019720 2.9017921E-10 

 

Table 5: Solutions of Method 4  

h Numerical 

value 

Error 

  ⁄  1.0041184 2.1463791E-03 

  ⁄  1.0028560 8.8404347E-04 

  ⁄  1.0024004 4.2842206E-04 

  ⁄  1.0021083 1.3635357E-04 

  ⁄  1.0020572 8.5271031E-05 

   ⁄  1.0019990 2.7058893E-05 

   ⁄  1.0019805 8.0884298E-06 

   ⁄  1.0019725 5.3668365E-07 
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Table 6: Solutions of Method 5 

h Numerical 

value 

Error 

  ⁄  1.0475928 4.5620792E-02 

  ⁄  1.0353402 3.3368233E-02 

  ⁄  1.0189177 1.6945725E-02 

  ⁄  1.0075474 5.5754652E-03 

  ⁄  1.0055154 3.5434628E-03 

   ⁄  1.0031348 1.1628158E-03 

   ⁄  1.0023487 3.7668894E-04 

   ⁄  1.0019961 2.4116392E-05 

Table 7: Solutions of Method 6 

h Numerical value Error 

  ⁄  1.0039932 2.0211819E-03 

  ⁄  1.0028050 8.3298147E-04 

  ⁄  1.0023758 4.0380182E-04 

  ⁄  1.0021005 1.2855861E-04 

  ⁄  1.0020524 8.0403617E-05 

   ⁄  1.0019975 2.5518384E-05 

   ⁄  1.0019801 8.0884298E-06 

   ⁄  1.0019725 5.0639475E-07 

 
4. CONCLUSION 

. On comparing these results, we note that the P-stable 

fourth order methods with reduced truncation error, that is, 

methods (1), (2), (3), (5) and (6) are slightly more accurate 

than Cash’s method (method (4)). There is a marginal 

difference between the accuracy of Methods (1) and (2), 

while methods (1) and (6) have same accuracy. The sixth 

order method, that is, method (3), is more accurate than any 

of the five methods, while method (5) is the least accurate 

method. 

The derivation of higher order direct hybrid methods with 

reduced truncation error and the application of our new 

methods in variable step codes is included in future targets. 
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